Divyanshu Sahu

divvanshusahu26 • **O divvanshurs** • +1(267)-665-9340 **EDUCATION**

2021-2023	University of Pennsylvania	Philadelphia, PA
	M.S.E Robotics. GPA: 3.93/4	
	Relevant Coursework: Learning in Robotics, Advanced Machine Perception (deep learning for computer vision), Model Predictive Control, Control and Optimization in Robotics.	
2015-2019	Institute of Technology, Nirma University	Ahmedabad, GJ
	B.Tech, Mechanical Engineering, October 2019. GPA: 8.25/10	
SKILLS		

Languages: C/C++, Python.

Frameworks: Pytorch, Robot Operating System (ROS/ ROS 2), MATLAB, Docker, Gazebo, RViz, Git, Linux.

RESEARCH AND PROFESSIONAL EXPERIENCE

mLAB, Autonomous Go-Kart Group (GRASP, UPenn)

Research Assistant, (September 2022- Current)

- Localization: Research focused on optimal sensor fusion techniques with GPS, IMU, camera, and Velodyne LIDAR.
- Calibration: Performed lidar-camera calibration using 3D-3D point correspondence methods. Separated cone detection pipelines using lidar and camera and fused the detections for robustness against individual sensor failure.

SkyMul

Robotics Intern, (May-August 2022)

- Led the integration of hardware and end-to-end software pipelines to build a waypoint task schedular using the ROS navigation stack for the desired behavior of a quadruped robot.
- Developed a low-level PID controller to stabilize the asymmetrical payload on the quadruped and integrated it with the high-level modifications of the navigation stack including the global planner and TEB controller.

Mowito Robotic Systems

Robotics Engineer, (July 2020- June 2021)

- **Improved runtime efficiency** by adding truncation and oscillation reduction algorithms to the MaxL local planner.
- Developed and implemented the 'robot_follower_node' feature, intended to make the robot follow a human using only the MaxL local planner.
- Added modularity to the stack modules by developing a **behavior tree framework for the navigation stack**.

PROJECTS

Image Segmentation and Object Detection

- SOLO (Segmenting Objects by Locations): Implemented end-to-end instance segmentation pipeline to categorize three objects in the scene using the COCO dataset.
- YOLO-v1 (You Only Look Once): Performed object detection as a single-stage object detection pipeline and analyzed its performance using the calculated mAP.
- Faster-RCNN (Region-Based Convolutional Neural Network): Implemented the two-stage object detection framework for classification by training both the region proposal network and the object detector heads.

Path planning approaches for a planar quadrotor

- [GitHub] Min-snap trajectory path planning: Implemented for a planar quadrotor using a quadratic program to minimize snap of the planned trajectory in flat coordinates.
- **MPC:** Used with discretized linear dynamics to solve the trajectory optimization problem over a receding horizon.
- **iLQR**: Implemented in an iterative manner for non-linear trajectory optimization. •
- LQR: Used a time varying formulation for trajectory tracking for a pre-defined nominal path of the quadrotor.

SLAM using Particle Filter for a humanoid robot

- **Fused IMU and Lidar data** to perform simultaneous localization and mapping of the THOR humanoid robot.
- Updated the map based on the log probabilities of the Lidar scan given the particle position and kept a track of obstacles by updating the log odds and binary occupancy map.

Autonomous Pick and Place Challenge

- Developed functionalities and grasping strategies for static and dynamic blocks using the Franka Panda Robot arm in **ROS**, Gazebo, and **RViz**. Translated the simulation results to the real robot.
- Implemented a **Rapidly exploring random tree (RRT)** and **A*** planner in joint space for traversing between two joint configurations and used collision checking criteria in the workspace for evaluating its feasibility.

a, PA

Philadelphia, PA

Prof. Rahul Mangharam

Bangalore, KA

Atlanta. GA

Eohan George

Puru Rastogi

[GitHub]

[GitHub]

[GitHub]

Odivyanshurs.github.io